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In this paper, solutions of free, barotropic waves around axisymmetric seamounts
are derived. Even though this type of oscillation has been studied before, we revisit
this problem for two main reasons: (i) the linear, barotropic, shallow-water equations
with a rigid lid are now solved with no further approximations, in contrast with
previous studies; (ii) the solutions are applied to a wide family of seamounts with
profiles proportional to exp(rs), with r being the radial distance from the centre of
the mountain and s any positive real number. (Most previous works are restricted
to the special case s = 2.) The resulting dispersion relation possesses a remarkable
simplicity that reveals a number of wave characteristics, for instance, the discrete
wave frequencies and the angular phase speed of the waves around the seamount are
easily derived as a function of the seamount shape. By varying the shape parameter
one can study trapped waves around flat-topped seamounts or guyots (s > 2) or sharp,
cone-shaped topographies (s < 2).
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1. Introduction
Seamounts are abundant topographic features over the ocean floor. Nowadays

there is a global estimate of more than 200 000 probable seamounts within a height
range of 0.1 and 6.7 km (Hillier & Watts 2007), and this number will continue to
increase as new methods and techniques of geological exploration progress. (The same
authors estimate that 60 % of seamounts higher than 1 km are yet undiscovered.) The
evolution of oceanic flows above and around isolated seamounts and ridges has
been the subject of intensive research during the past decades. As a result, several
physical mechanisms have been reported for different flow regimes: free barotropic
waves (Rhines 1969), trapped waves with stratification and friction effects (Brink
1989), forced waves associated with tides (Huthnance 1974), trapped waves around
non-axisymmetric seamounts (Chapman 1989), the generation of vortices (Huppert
& Bryan 1976), the evolution of nonlinear vortices above seamounts (Nycander &
Lacasce 2004), among many other studies where both theoretical and numerical
oceanic models have been applied. A concise review of the most relevant dynamical
processes over seamounts is presented in Beckman & Mohn (2002). It must also
be mentioned that part of the scientific and economic interest in understanding
the circulation above these topographic features is their relation with the large
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plankton and fish abundances frequently observed above them, as widely reviewed by
Genin (2004). Thus, there is strong evidence that the seamount biology is profoundly
influenced by hydrodynamical processes, as pointed out by Beckman & Mohn (2002).

In this paper, we revisit the basic problem of barotropic, free waves around
axisymmetric seamounts from the theoretical point of view. An approximate analytical
solution for these waves was found by Rhines (1969) 40 years ago for a particular
type of topography, in which the fluid depth increases proportionally to exp(r2) from
the summit of the mountain (r being the radial distance from the centre). That
study showed the trapping of waves around seamounts, and that these perturbations
rotate in the clockwise direction (in the Northern Hemisphere). These results have
been examined under different conditions in subsequent studies. In particular, Brink
(1989) numerically calculated the free modes of trapped waves around seamounts in
a stratified ocean, and also devoted some attention to the barotropic case. A relevant
conclusion is that waves with low azimuthal and radial wavenumbers are more
likely to survive in the ocean due to resonance effects associated with tides, whilst
higher wavenumber modes are damped by bottom friction. The detailed numerical
simulations of Haidvogel et al. (1993) supported these results.

There are three main reasons for coming back to the problem of trapped waves
around seamounts: (i) here, we derive new, exact analytical solutions of the barotropic
problem; (ii) the solutions include a wide class of topographies, from seamounts with
a very narrow summit to flat-topped seamounts or guyots; and (iii) the procedure
is fairly simple and therefore widens the possibilities for attacking more complex
problems on topographic waves. The existence of complete solutions reveals the exact
dispersion relation of these waves with no numerical approximations. This expression
shows the dependence of the wave frequency on the shape of the seamount and the
angular phase speed of the waves around the topographic feature, among some other
wave characteristics.

Thus, a fundamental point examined here is the shape of the mountain. For instance,
several tall seamounts are characterized by a flat plateau on the summit extending
a few tens of kilometres, and a pronounced steepness. Well-known structures of this
type are the Great Meteor Seamount in the Atlantic Ocean (e.g. Beckman & Mohn
2002) and the Fieberling Guyot in the Pacific Ocean (see, e.g., Haidvogel et al. 1993).
In contrast, some other seamounts have a sharp, cone-shaped summit. The solutions
obtained here are a family of barotropic waves over seamounts with depth profile
increasing as exp(rs), with s being a positive real number. We first examine the case
of a seamount profile with s = 2, considered in several other studies. Afterwards,
the behaviour of trapped waves over flat-topped guyots (s > 2) or sharp-peak (s < 2)
mountains is analysed.

The rest of this paper is organized as follows. The family of topographic wave
solutions in the presence of an axisymmetric seamount is derived in § 2. In § 3
some examples are presented for different seamount profiles (different values of the
parameter s). The discussion is presented in § 4.

2. Solutions
Using polar coordinates, the linear shallow-water equations for a homogeneous

fluid layer in a rotating system are

ut − f v = −gηr, (2.1)

vt + f u = −g

r
ηθ , (2.2)
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(rhu)r +
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r
(hv )θ = 0, (2.3)

where subindices denote partial derivatives, u and v are the velocity components in
the radial and azimuthal directions, respectively, η is the free-surface deformation, h is
the fluid-layer depth, f is the Coriolis parameter (assumed constant) and g is gravity.
Note that the rigid-lid approximation has been applied in the continuity equation:
the fluid depth, h(r, θ), is considered time-independent. Hereafter, we consider the
fluid depth associated with an axisymmetric seamount h(r). From continuity, the
velocity components can be defined in terms of the derivatives of a transport function
ψ(r, θ, t) as

u =
1

hr
ψθ, v = −1

h
ψr. (2.4)

The vorticity equation is derived by subtracting the appropriate derivatives of the
momentum equations, which yields[

1

r
(rv )r − 1

r
uθ

]
t

+ f

[
1

r
(ru)r +

1

r
vθ

]
= 0. (2.5)

This expression states that changes of relative vorticity (first term) are associated
with horizontal divergence or convergence of the flow (second term) as fluid columns
experience changes of depth. Substituting the divergence obtained from the continuity
equation and the expressions for the velocity components (see (2.4)) gives the following
equation for the transport function:

ψrrt +

(
1

r
− hr

h

)
ψrt +

1

r2
ψθθt +

f

r

hr

h
ψθ = 0. (2.6)

Wave solutions are proposed to be of the form

ψ(r, θ, t) = h(r)1/2φ(r) exp[i(ωt + nθ)], (2.7)

where the azimuthal wavenumber n is a positive integer and ω is the wave frequency.
This yields an equation for the radial function:

φrr +
1

r
φr +

[(
1

2

hr

h

)
r

−
(

1

2

hr

h

)2

+
1

2r

hr

h
− n2

r2
+

f n

ωr

hr

h

]
φ = 0. (2.8)

Note that the complete radial part of solutions (2.7), h1/2φ, is the only one for which
the surviving factor of the first derivative of φ is 1/r in (2.8), as noted by Rhines
(1969) (in the context of continental shelf waves, see also Gill 1982, p. 409). Rhines
(1969) derived an equivalent expression for an axisymmetric seamount with profile
h ∝ exp(r2). In addition, he neglected the second term in the square bracket in order
to obtain solutions in terms of Bessel functions. A different approach is followed here.
First, the depth profile and its first derivative have the following form:

h(r) = h0 exp(λr)s ⇒ hr

h
= sλ(λr)s−1, (2.9)

where h0 is the minimum depth at the summit, λ−1 is the horizontal length scale of
the seamount and the parameter s measures the shape of the mountain: for small s,
the mountain is very steep near the summit and less steep far from it; in contrast, for
large s the summit is nearly flat whilst the topography is rather abrupt for a distance
larger than λ−1. Secondly, the full equation is considered with no approximations,
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which yields

φrr +
1

r
φr +

[(
s2

2
+

fns

ω

)
λsrs−2 − s2λ2s

4
r2s−2 − n2

r2

]
φ = 0. (2.10)

Now the following change of variable is applied:

ρ = (λr)s , χ(ρ) = φ(r), (2.11)

which yields the equation for the new dependent variable

ρχρρ + χρ +

(
1

2
+

f n

sω
− ρ

4
− n2

s2ρ

)
χ = 0. (2.12)

This expression is exactly the self-adjoint form of the associated Laguerre equation
(Arfken 1970, p. 620):

ρχρρ + χρ +

(
2p + k + 1

2
− ρ

4
− k2

4ρ

)
χ = 0, (2.13)

with solutions in terms of the associated Laguerre polynomials Lk
p(ρ),

χ(ρ) = exp(−ρ/2)ρk/2Lk
p(ρ), (2.14)

where k > −1 is a real number and p � 0 is an integer. By comparing the terms inside
brackets in (2.12) and (2.13), we note that these indices are given by

k =
2n

s
, (2.15)

p =
n

s

(
f

ω
− 1

)
. (2.16)

These definitions provide some important properties of the waves around the
seamount:

(i) The dispersion relation of the waves is derived from the expression for p:

ω

f
=

n

sp + n
. (2.17)

Hence, the frequency depends on integers n � 1, p � 0 and the real number s > 0.
(ii) The angular phase speed around the seamount is

cn,p(s) =
ω

n
=

f

sp + n
, (2.18)

which shows that waves rotate around the mountain with angular speeds depending
inversely on s, n and p.

(iii) If p is zero then ω = f , resulting in a family of inertial motions (for different
values of n and s). Besides, the fastest oscillation around the seamount is (n, p) = (1, 0),
which rotates around the mountain in one inertial period, c1,0(s) = f , regardless of the
shape of the mountain. However, previous studies indicate that trapped waves around
seamounts are subinertial; so this analytical result should be taken with caution, as
pointed out in § 4.

In order to find the complete solutions, we first note that the dimensional form of
the radial function is

φ(r) = A exp(−λsrs/2)(λsrs)k/2Lk
p(λsrs), (2.19)
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where A is an arbitrary constant with appropriate units. When substituted in (2.7),
the full solution for the transport function is

ψ(r, θ, t) = ψ0(λr)
nL2n/s

p (λsrs) exp[i(ωt + nθ)], (2.20)

where ψ0 = Ah
1/2
0 is the arbitrary amplitude.

The horizontal velocity components are calculated by means of expression (2.4)
and by taking the real parts:

u = −ψ0nλ

h0

exp(−λsrs)(λr)n−1L2n/s
p (λsrs) sin(ωt + nθ), (2.21)

v = −ψ0λ

h0

exp(−λsrs)(λr)n−1

×
[
(sp + 2n)L2n/s−1

p (λsrs) − nL2n/s
p (λsrs)

]
cos(ωt + nθ), (2.22)

where the r-derivative of the transport function is calculated by using a suitable
recurrence relation of the associated Laguerre polynomials (see the Appendix). Finally,
the relative vorticity field is calculated by using appropriate recurrence relations for
the polynomials again:

ζ = −ψ0λ
2

h0

exp(−λsrs)(λr)n−2

×
[
snλsrsL2n/s

p (λsrs) − (sp + 2n)2L2n/s−1
p (λsrs)

+ (sp + 2n)(sp + s)L2n/s−1
p+1 (λsrs)

]
cos(ωt + nθ). (2.23)

The polynomials are written in a form such that the corresponding indices are within
the range of permitted values (see the Appendix for further details).

Another important point to notice is that the transport function (2.20) increases
indefinitely for large r . This is a consequence of using the depth profile proportional
to exp(rs), which also diverges. However, the velocity components and the vorticity
field are proportional to exp(−rs) and therefore these fields converge for large r .
From the oceanographical point of view, the physical validity of the solutions is then
restricted to some finite distance proportional to the length scale of the mountain,
λ−1. This is further discussed in § 4.

3. Examples
In order to describe the structure and evolution of the waves, three representative

cases of seamounts of the form (2.9) are presented in this section: with s = 1, 2
and 6. The corresponding profiles are shown in figure 1. Hereafter, in all cases the
minimum depth (at the origin) is h0 = 500 m and the length scale of the mountain is
λ−1 = 20 km. A Coriolis parameter of 10−4 s−1 is considered, which gives an inertial
period of T ≈ 0.72 days. Finally, recall that the wave solutions have an arbitrary
amplitude determined by ψ0, which, for simplicity, is taken as unity.

3.1. Typical seamount profile (s = 2)

The seamount with shape parameter s = 2 was considered by Rhines (1969) and
has been used in several other studies (e.g. Brink 1989). In order to appreciate the
azimuthal structure of waves over this feature, figure 2 shows the vorticity and velocity
fields at time t = 0 of three waves with n= 1, 2, 3 and setting p =1. The vorticity field
is composed of 2n cells with alternate signs around the seamount. Thus, for instance,
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Figure 1. Depth profiles over seamounts of the form h = h0 exp(λsrs): s = 1 (dashed line),
s = 2 (solid line) and s =6 (dashed–dotted line). Topographic parameters are h0 = 500 m and
λ−1 = 20 km.

(n, p) = (1, 1)

(a)

(d) (e) ( f )

(b) (c)

(n, p) = (2, 1) (n, p) = (3, 1)

Figure 2. Azimuthal structure of topographic waves over a seamount with s =2. (a–c)
Relative vorticity contours for waves with azimuthal wavenumber n= 1, 2 and 3. In all
cases p = 1. Continuous (dashed) contours indicate positive (negative) vorticity values of
arbitrary magnitude. The contour interval is one-tenth of the maximum value. The seamount
is indicated by a grey circle with radius λ−1 = 20 km. (d–f ) Horizontal velocity vectors for the
same waves. The magnitude of the vectors is arbitrary.
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(n, p) = (1, 0)

(a)

(d) (e) ( f )
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ω

Figure 3. Radial structure of topographic waves over a seamount with s =2. (a–c) Relative
vorticity contours for waves with radial wavenumber p = 0, 1 and 2. In all cases n= 1. Contours
and grey circle as in previous figure. (d–f ) Radial vorticity profiles of the same waves. The
profiles begin at the origin and continue along the (eastward) horizontal direction. Vorticity
values on the vertical axis are arbitrary.

the case n= 1 shows a dipolar structure, which has been described in previous studies
(Beckman & Mohn 2002). Note that these cells are arranged along the circumference
with radius λ−1 (indicated with a black line). Accordingly, the velocity field shows an
equivalent distribution of counter-rotating cells.

Figure 3 shows the radial structure of three cases with p = 0, 1, 2 and setting n= 1.
Recall that index p is allowed to be zero. As mentioned above, the corresponding
azimuthal distributions for n= 1 are dipolar modes, as shown by the corresponding
vorticity fields. The radial structure is presented in figure 3(d–f ), where radial profiles
of the vorticity field are plotted. These profiles show an oscillatory behaviour with
decreasing amplitude for large radial distances. Note that index p indicates the number
of radial zero crossings of the vorticity. For p = 0, there are no zero crossings: the
profile reaches a maximum and asymptotically approaches zero for large r . For
p = 1, there is one zero crossing, after which the profile asymptotically approaches
zero. Equivalently, for p = 2, there are two zero crossings. Thus, index p is a natural
measure of the radial structure or, in other words, the radial wavenumber. It is also
worth noticing that the amplitude of the profile rapidly decreases with r .

The dispersion relation for this seamount, ω/f = n/(2p + n), is plotted in figure 4
for different values of n and p. This plot is made in a way similar to figure 3 of
Brink (1989): waves exist only at discrete points, and dashed lines are drawn just for
clarity. Waves with radial wavenumbers equal to or larger than 1 (p = 1, 2, . . .) show
a subinertial frequency that increases with azimuthal wavenumber n; in fact, for very
large n their frequency asymptotically approaches f . Another important point to
consider is that waves with radial number p equal to zero correspond to oscillations
with inertial frequency for any azimuthal mode n (horizontal line).

The topographic waves progress around the seamount in an anticyclonic direction.
This behaviour has been described by Rhines (1969) and many others in subsequent
studies. By using expression (2.18) the angular phase speed is cn,p(2) = f/(2p+n). For
instance, for waves in figure 2 the angular phase speeds are c1,1(2) = f/3, c2,1(2) = f/4
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Figure 4. Dispersion relation for waves over a seamount with s = 2 (using f = 10−4 s−1).
Valid frequencies are indicated with stars; dashed lines are used for clarity and for comparison
with figure 3 from Brink (1989).

and c3,1(2) = f/5, i.e. waves with more azimuthal modes progress more slowly (for a
given p). Analogously, waves with larger radial wavenumbers p are slower as well
(for a given n).

3.2. Flat-topped seamounts or guyots (s > 2)

As mentioned § 1, several tall seamounts are characterized by a flat plateau on the
summit. Structures of this kind are well represented by the exponential profile with
the shape parameter s > 2. Here, some examples for s = 6 are presented. Note in
figure 1 the pronounced flatness of the summit for this case.

Figure 5(a–c) shows the vorticity field of waves (n, p) = (1, 1), (3, 1) and (6, 1).
Of course, the azimuthal structure of the waves is similar to the cases shown in
the previous subsection: an arrangement of 2n counter-rotating cells around the
seamount. However, the vorticity cells are strongly confined along the periphery of
the circle with radius λ−1: the strength of the waves is nearly zero close to the centre
of the seamount and also at large radial distances. The low values over the almost-
flat summit are expected since there are weak divergence effects in this region. The
confinement of the waves over a narrow region of the guyot periphery is remarkable
for the first wave with n= 1: note the strong deformation of its dipolar structure in
a new-moon fashion in order to be confined within an annular region of radius λ−1.

The rapid decay for large r , on the other hand, is one of the characteristics of the
analytical solutions due to the term exp(−λsrs) in the vorticity and velocity fields. For
this reason, the structure of waves with larger radial wavenumber p is very similar to
the ones presented here, since the amplitudes of successive radial oscillations rapidly
decay for large radial distances (as shown in the radial profiles in figure 3).
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(n, p) = (1, 1) (n, p) = (3, 1)

(a)

(d)

(e) ( f )

(b) (c)

(n, p) = (6, 1)

Figure 5. Relative vorticity contours of topographic waves. (a–c) Over a flat-topped seamount
with s = 6. (d–f ) Over a sharp peak seamount with s = 1. Contours and grey circle as in figure 2.

The dispersion relation in this example is ω/f = n/(6p + n), and therefore these
waves have a lower frequency compared with those over the less steep seamount
presented in the previous subsection. Besides, the corresponding angular speeds,
cn,p(6) = f/(6p + n), are slower as well: c1,1(6) = f/7, c3,1(6) = f/9 and c6,1(6) = f/12
(except for p = 0).

3.3. Sharp, conical seamounts (s < 2)

The case of a cone-shaped mountain with s = 1 is also shown in figure 1. Figure 5
(d–f ) presents the corresponding vorticity fields for the same waves (n, p) = (1, 1),
(3, 1) and (6, 1). There are strong differences between these cases: the dipolar structure
of the first wave is strongly confined within the region around the tip of the seamount.
In contrast, the waves with larger azimuthal numbers n are more intense far from the
summit and present a triangular configuration of the vorticity cells.

It is also worth noticing that the waves over this sharp seamount have radically
different character compared with previous cases over the guyot, as can be seen in
figure 5(a–c). Another important difference with guyots is that these waves have a
greater angular phase speed, cn,p(1) = f/(p+n), compared with those over seamounts
with larger s. For these examples, c1,1(1) = f/2, c3,1(1) = f/4 and c6,1(1) = f/7.

Sharp seamounts present a minor restriction on the permitted values of the shape
parameter only for the wave with n= 1. Although the mathematical solutions of the
velocity fields are valid over the entire domain, the vorticity field diverges at r = 0
when n=1 and s < 1. This can be shown explicitly by calculating the vorticity field
and finding that it is proportional to rn+s−2. Thus, for n= 1 it is required that s � 1
in order to have a finite vorticity value over the summit. For n � 2 this restriction for
s does not exist.

4. Discussion
Exact solutions of barotropic, linear, rigid-lid topographic waves around

axisymmetric seamounts have been derived. Even though this type of oscillation has
been studied since some time ago, complete analytical expressions for the barotropic
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Figure 6. Wave frequency as a function of the shape parameter s for different sets of waves.

case have not been reported, as far as the author knows. One of the earlier and
more complete works is that of Rhines (1969), who found approximate solutions
in terms of Bessel functions over a topography with depth profile proportional to
exp(r2). (Rhines’ paper also considers the coupling of such solutions with an external
field dominated by Rossby waves, while in this paper our attention is restricted
only to regions over the seamount.) In this study, we report complete solutions of
(2.8) in terms of associated Laguerre polynomials, and applied to an infinite set of
axisymmetric seamounts with profile proportional to exp(rs), with s being a real
positive number. Thus, besides the fact that no further approximations are made,
the present solutions describe topographic waves over seamounts with very different
shapes determined by the parameter s. These topographic features can be flat-topped
seamounts for large s (which are frequently observed in the ocean) or sharp peaks
for low s (see figure 1).

A number of characteristics of the waves can be noticed from the derived solutions:
(a) The main spatial distribution of the waves is essentially given by the azimuthal

wavenumber n: the waves are characterized by 2n cells of alternating relative vorticity
around the summit, and which rotate around the seamount in an anticyclonic
direction. Thus, waves with n= 1 are formed by a dipolar structure, n= 2 by a
quadrupole, etc. The radial wavenumber is directly associated with index p, which
gives the number of zero crossings of the vorticity radial profiles.

(b) The exact dispersion relation has a remarkable simplicity given by expression
(2.17). This relation shows the dependence of the wave frequencies on the parameter s,
i.e. on the shape of the mountain, as well as on the azimuthal and radial wavenumbers
n and p, respectively. For p � 1 the wave frequency increases with n, as shown in
figure 4. This behaviour was shown in the nearly barotropic numerical solutions of
Brink (1989), who numerically solved the structure of seamount-trapped waves with
s = 2 (see his figure 3). The frequency of all waves asymptotically tends to f for
very large n (fixing p and s). In addition, waves over seamounts with very small s

(very sharp peaks) also tend towards the inertial frequency. On the other hand, wave
frequencies approach zero for very large p or s. Figure 6 shows the frequency in terms
of the shape parameter for different waves.
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(c) The angular phase speed of waves around the seamount is given by (2.18).
This speed approaches zero for large s, p or n. On the contrary, the fastest motion
around the seamount, regardless of the shape parameter, is when (n, p) = (1, 0),
which completes one turn around the seamount in one inertial period (c1,0(s) = f ).
It is also possible to observe that, for a given pair (n, p), topographic waves over
guyots (s > 2) tend to have an angular speed slower than waves trapped around
a sharp seamount (s < 2). In general, the dispersive character of the waves is
evident.

(d) Over guyots (s > 2), the waves are strongly concentrated within an annular
region with radius of the order of the topography horizontal scale, λ−1. Wave motions
over the summit are nearly zero since flow divergence is very weak over the almost flat
top. As mentioned in § 1, this seamount shape is commonly found in the ocean, and
therefore the concentration of the wave motion at a distance λ−1 from the summit is
one of the cases that might have a direct application to oceanographical situations. In
contrast, for sharp seamounts (s < 2) the waves are strongly concentrated around the
peak only when n= 1, whilst the vorticity cells have a triangular, spatially extended
shape for larger n. There are two remarks of caution about the present model. First,
inertial oscillations are obtained for the gravest radial wavenumber p = 0 and arbitrary
azimuthal wavenumber n, which has not been considered in previous works on
topographic trapped waves. In general, other studies deal with subinertial frequencies.
Inertial oscillations correspond to the motion of fluid columns unconstrained by
pressure forces, but subject to the influence of topographic spatial variations. This
can be demonstrated by showing that the solutions (2.21) and (2.22) with ω = f

satisfy the unforced governing equations (2.1)–(2.3) (setting the right-hand sides to
zero). This is not very difficult to calculate since the associated Laguerre polynomials
are L

2n/s

0 = L
2n/s−1
0 = 1. The vorticity equation (2.5) and the original equation for the

transport function (2.6) are also satisfied. In addition, the group velocity around
the seamount is zero for inertial motions: using the dispersion relation (2.17) yields
∂ω/∂n= f sp/(sp + n)2 = 0 for p = 0; so these oscillations do not transport energy.
Actually, they should not be regarded as waves, but as inertial motions in the absence
of pressure forces and governed by the presence of the topography. Therefore, in
principle, inertial solutions should not be excluded, although their physical meaning
must be considered carefully.

Another important point is that the transport function (2.20) diverges for large
r . This is a consequence of using the depth profile proportional to exp(λsrs), which
obviously also diverges. Therefore, the solutions of ψ are physically unrealistic far
from the seamount. In order to avoid this problem, other authors solve the flow over
the seamount and then match the solution with an external flow over a flat-bottom
ambient ocean. That was the procedure followed by Rhines (1969), who obtained
approximate solutions of the radial part of ψ (see (2.8) in § 2). In the present case,
in contrast, it has been preferred to obtain exact solutions over the seamount with
no further approximations, though it implies paying the price of a transport function
increasing indefinitely for r � λ−1. More importantly, the velocity components and the
relative vorticity are well-behaved functions on top and around the mountain: they
possess values that are physically realistic over these regions, and do not diverge for
large distances because they are proportional to exp(−λsrs), which rapidly decays for
large r . This is evident from figures 2 and 3, for instance, which show that the main
structure of the waves is restricted or trapped around the seamount. As a conclusion,
the solutions are physically valid within a range of a few times the length scale of the
mountain λ−1.
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A more precise estimation of this range in the oceanographical context can be
determined by considering that the solutions are valid up to a radial distance D, at
which the depth field reaches about 4000 m. Using a 200 m depth at the summit, such
a distance is D = (ln 20)1/sλ−1 ≈ 31/sλ−1. Thus, an appropriate criterion depends on
the steepness of the seamount. Furthermore, since the velocity and relative vorticity
fields have strongly decayed beyond D (due to the term exp(−λsrs)), it is reasonable
to consider that the solutions are still valid for about three or four times λ−1.
This criterion suggests a practical restriction for some solutions over a cone-shaped
seamount, since the oscillations are not clearly confined or trapped within a short
distance from the top, as in case (6, 1) shown in figure 5(f ).

Future work will focus on comparing the characteristics of the present wave
solutions (e.g. frequencies and angular phase speeds) with seamount-trapped waves
described in other observational and numerical studies. According to some authors
(e.g. Brink 1989; Chapman 1989; Beckmann & Mohn 2002), predominant waves in
oceanographical situations are those with low azimuthal and radial wavenumbers,
since frictional effects or bottom roughness would damp higher modes. Thus, the
expected manifestation of oceanic waves would be a dipolar structure rotating
anticyclonically around a seamount. On the other hand, additional efforts in
laboratory experiments are in progress in order to elucidate the nonlinear behaviour
of barotropic flows over seamounts, and the signal of linear oscillations; the results
will be published elsewhere.

The author gratefully acknowledges the comments of J. L. Ochoa on the earliest
version of this paper, and the fruitful remarks made by one of the anonymous referees
during the revision process.

Appendix. Recurrence relations for polynomial solutions
The azimuthal velocity component v and the relative vorticity ζ contain one and

two r-derivatives of the transport function, respectively, and hence derivatives of
the associated Laguerre polynomials. In order to calculate these fields, the following
recurrence relation for derivatives of the polynomials is used (Abramowitz & Stegun
1972):

ρ
[
Lk

p(ρ)
]
ρ

= pLk
p(ρ) − (p + k)Lk

p−1(ρ), (A 1)

which gives

v = −ψ0λ

h0

exp(−λsrs)(λr)n−1

×
[
(sp + n)L2n/s

p (λsrs) − (sp + 2n)L2n/s

p−1(λ
srs)

]
cos(ωt + nθ), (A 2)

ζ = −ψ0λ
2

h0

exp(−λsrs)(λr)n−2

×
{
[(sp + n)(sp + n − sλsrs) − n2]L2n/s

p (λsrs)

− [(sp + 2n)(2(sp + n) − s(1 + λsrs)] L
2n/s

p−1(λ
srs)

+ (sp + 2n)(sp + 2n − s)L2n/s

p−2(λ
srs)

}
cos(ωt + nθ). (A 3)

Note that polynomials with subindices p − 1 and p − 2 appear, which apparently
restricts the value of p to be equal to or larger than 2. In order to remove this
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limitation, the following recurrence relations are used:

Lk
p−1(ρ) = Lk

p(ρ) − (p + k)Lk−1
p (ρ), (A 4)

Lk
p−2(ρ) = Lk

p(ρ) − 2Lk−1
p (ρ) + Lk−2

p (ρ). (A 5)

For the second expression, it is necessary to use an additional relation for Lk−2
p (in

order to avoid restrictions on k):

(p + k − 1)Lk−2
p (ρ) = (p + 1)Lk−1

p+1(ρ) − (p + 1 − ρ)Lk−1
p (ρ). (A 6)

The resulting v and ζ fields are given by (2.22) and (2.23). Using appropriate recurrence
relations, one can find an infinite way of expressing the solutions. Here we chose those
giving the simplest forms.
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